
Journal of Computational Physics 228 (2009) 5669–5686
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A modified implicit Monte Carlo method for time-dependent radiative
transfer with adaptive material coupling

Ryan G. McClarren a,*, Todd J. Urbatsch b

a Institute for Applied Mathematics and Computational Science, Texas A&M University, College Station, TX 77843-3133, USA
b Computational Physics Group (CCS-2), Los Alamos National Laboratory, P.O. Box 1663, MS D409, Los Alamos, NM 87545, USA

a r t i c l e i n f o
Article history:
Received 8 December 2008
Received in revised form 13 April 2009
Accepted 15 April 2009
Available online 3 May 2009

Keywords:
Implicit Monte Carlo method
Thermal radiative transfer
High energy density physics
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.04.028

* Corresponding author.
E-mail addresses: rgm@tamu.edu (R.G. McClarren
a b s t r a c t

In this paper we develop a robust implicit Monte Carlo (IMC) algorithm based on more
accurately updating the linearized equilibrium radiation energy density. The method does
not introduce oscillations in the solution and has the same limit as Dt !1 as the standard
Fleck and Cummings IMC method. Moreover, the approach we introduce can be trivially
added to current implementations of IMC by changing the definition of the Fleck factor.
Using this new method we develop an adaptive scheme that uses either standard IMC or
the modified method basing the adaptation on a zero-dimensional problem solved in each
cell. Numerical results demonstrate that the new method can avoid the nonphysical over-
heating that occurs in standard IMC when the time step is large. The method also leads to
decreased noise in the material temperature at the cost of a potential increase in the radi-
ation temperature noise.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Originally introduced by Fleck and Cummings [1], the implicit Monte Carlo (IMC) method is a stochastic means of solving
the thermal radiative transfer equations. It manipulates the nonlinear equations describing thermal radiative transfer to get
a linearized transport equation that can be solved using the standard Monte Carlo techniques for linear transport. Whereas
the expected values of Monte Carlo tallies in linear transport can be exact, IMC has truncation error. These errors arise from
the linearization of the material energy equation and from approximately time integrating the material energy equation.
Also, spatial error is introduced by the necessity of having a spatial grid to describe the material temperature.

A particularly vexing problem with IMC is the potential for the solution to nonphysically violate the maximum principle
that solutions to time-dependent radiative transfer obey [2]. This maximum principle states that if the material and radiation
temperatures have initial and boundary data that lie within a temperature bounds, then the solution forever will lie between
these bounds [3,4]. Both Larsen and Mercier [2] and Mosher and Densmore [5] have attempted to develop time step controls
based on the infinite medium problem. The time step limits derived were prohibitively small and, for finite-dimensional
problems, are more restrictive than necessary.

The violation of the maximum principle by IMC has been shown in infinite medium problems by Densmore and Larsen [6]
where the material temperature becomes hotter than the maximum initial radiation temperature in one time step. On Mar-
shak wave problems with a large time step, the IMC solution can have the material temperature higher than the boundary
temperature [1]. A more subtle overheating phenomenon in IMC solutions occurs when, given initial data with the radiation
temperature above the material temperature, the IMC solution nonphysically ‘‘flips” these temperatures [7].
. All rights reserved.
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Various methods have attempted to correct certain errors in the IMC method. The Carter–Forest method [8] exactly solves
the linearized material energy equation through a Monte Carlo procedure and the symbolic implicit Monte Carlo (SIMC)
method [9,10] does not have linearization error but does introduce a time discretization error. Other recent work has defined
a time-dependent Fleck factor (and source term) to more accurately treat the time dependence of the intensity over a time
step [11].

Despite the potential benefits of other methods, IMC is the stochastic method used most often for simulating thermal
radiative transfer. Below we derive a method that is similar to the Fleck and Cummings IMC method in that it represents
the absorption/emission process through effective absorption and scattering, but differs in that it more accurately integrates
the linearized material energy equation. This higher order method can be implemented in current IMC simulations simply by
changing the definition of the Fleck factor. With the modified IMC method we devise an adaptive scheme to determine how
much effective absorption or scattering there will be in the problem. This adaptive method takes the beginning of time step
radiation and material temperatures in each cell and solves a zero-dimensional transport problem via standard IMC. If the
material temperature in this 0-D solution is greater than the equilibrium temperature, the modified method is used to sup-
press this overheating.

2. Derivation for the gray case

We first will introduce the Fleck and Cummings [1] (IMC) method. After discussing this standard method, we will develop
our new method.

2.1. Standard IMC method

We begin with the equations for grey thermal radiative transfer without scattering [1],
1
c
@I
@t
þ bX � rI þ rI ¼ 1

4p
racT4; ð1aÞ

@um

@t
¼ r

Z
4p

IdbX � acT4
� �

þ S: ð1bÞ
In these equations the specific intensity of radiation is denoted by Iðx; bX; tÞ; T is the material temperature, um is the material
energy density, bX is the direction of flight, a is the radiation constant, c is the speed of light, S is an arbitrary source function
and rðx; TÞ is the opacity of the material and has units of inverse length. Eq. (1a) models the transport of the radiation
through the material medium and Eq. (1b) governs the change in material energy from the source S and radiation being ab-
sorbed and emitted by the material.

To derive an implicit Monte Carlo method for these equations we will define the equilibrium energy density variable as
ur ¼ aT4: ð2Þ
In words, ur is the value of the radiation energy density when the material and radiation are in equilibrium. As is standard,
we also write
@um

@ur

¼ b�1: ð3Þ
In the simple case of constant specific heat, cv, where the material energy density is given by um ¼ qcvT , we have b ¼ 4aT3

qcv
.

Using our newly defined variables we can rewrite Eq. (1) as
1
c
@I
@t
þ bX � rI þ rI ¼ 1

4p
crur; ð4aÞ

@ur

@t
¼ br

Z
4p

IdbX � cur

� �
þ bS: ð4bÞ
The goal of an implicit Monte Carlo method is to get an implicit definition of ur from Eq. (4b) to linearize Eq. (4a) allowing
for a Monte Carlo solution of the radiation transport equation.

The Fleck and Cummings procedure averages Eq. (4b) over a time step as
unþ1
r
� un

r

Dt
¼ 1

Dt

Z tnþ1

tn

dt br
Z

4p
IdbX � cur

� �
þ bS

� �
; ð5Þ
where the superscripts denote the time level. Then the average value of ur is written as an interpolation between the begin-
ning and end of step values
~ur �
1
Dt

Z tnþ1

tn

dtur � aunþ1
r
þ ð1� aÞun

r
: ð6Þ
Using the definition of ~ur in Eq. (5) gives
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unþ1
r
¼ un

r
þ
Z tnþ1

tn

dtbr
Z

4p
IdbX � cDtbrðaunþ1

r
þ ð1� aÞun

r
Þ þ DtbS; ð7Þ
where ð��Þ denotes a properly time-averaged quantity, a 2 1
2 ;1
� �

is the implicitness factor and the superscripts denote the
time level. In practice a is almost always set to unity because smaller values of a can lead to oscillatory behavior in the solu-
tion although a ¼ 1=2 gives a second-order update when b and r are constant. Also, br are generally evaluated at the n time
level as bnrn and a similar approximation is made for bS. A consistent approximation to Eq. (7) is [6]
unþ1
r
¼ un

r
þ Dtbr

Z
4p

IdbX � cDtbrðaunþ1
r
þ ð1� aÞun

r
Þ þ DtbS; ð8Þ
where the error in this approximation is OðDtÞ. This approximation is consistent in the sense that as Dt ! 0, Eqs. (7) and (8)
are identical.

Eq. (8) can be rewritten as
~ur ¼ fun
r
þ ð1� f Þ

c

Z
4p

IdbX þ 1
r

S
� �

; ð9Þ
with
f ¼ 1
1þ abrcDt

; ð10Þ
and for convenience we have dropped the overbars from b; S, and r. The expression for ~ur from Eq. (9) is then substituted
into the transport equation, Eq. (4a), to get the linear transport equation to be solved by Monte Carlo:
1
c
@I
@t
þ bX � rI þ rI ¼ 1

4p
ð1� f Þr

Z
4p

IdbX þ 1
4p
ðcrfur þ ð1� f ÞSÞ: ð11Þ
This transport equation has some interesting properties. As a result of the procedure for determining ~ur, Eq. (11) has
effective scattering and absorption coefficients given by
rs ¼ ð1� f Þr; ra ¼ fr: ð12Þ
Eq. (11) can be solved with a standard linear Monte Carlo solution technique. We also note that the factor f is bounded by
0 6 f 6 1 and that as Dt !1 the value of f goes to zero, which is to say that, in the limit of an infinite time step, there is no
effective absorption and the material energy will not change over a time step.

Before continuing, we want to point out that the material energy and temperature are not updated based on Eq. (8).
Rather the change in material energy is computed at the end of time step by tallying the number of absorption and emission
events in a particular cell during a timestep:
Dum ¼
X# absorptions

i¼0

ðhmÞi �
X# emissions

j¼0

ðhmÞj; ð13Þ
where ðhmÞi is the energy of the photon involved in event i. Nonetheless, for 0-D problems it is possible to give a solution for
the change of material energy during a time step in the limit of infinite particles [5],
Dum ¼
1
c

Z
4p

IndbX � un
r

� �
ð1� e�fcrnDtÞ: ð14Þ
We will revisit this expression below when we develop an adaptive update scheme.

2.1.1. Approximations in IMC
We now briefly summarize the approximations in the Fleck and Cummings procedure. First, we note that the material

energy equation was linearized by approximating the value of b and r with a single value; in reality these values change
nonlinearly with the material energy. This approximation is hard to avoid because we generally desire a linear transport
equation to solve via Monte Carlo. It would be possible to define an iterative procedure to remove the linearization error
by linearizing Eq. (1b) and solving a linear transport equation in each iteration. Such a iterative method is prohibitively
expensive because it would involve several Monte Carlo solutions per time step. The linearization error is also addressed
by the symbolic implicit Monte Carlo method (SIMC) [9,10] where Eq. (1b) is not linearized but r is evaluated at the previous
time step value.

The other main approximation in the Fleck and Cummings IMC method is that the instantaneous intensity, I, is used in the
definition of unþ1

r
in going from Eqs. (7) to (8), which is equivalent to assuming that the time dependence of I does not influ-

ence the emission process. Under this assumption the re-emission process is instantaneous and is modeled by effective scat-
tering. Moreover, with the approximation that the time dependence of I does not affect the emission, the strength of the
emission source cannot change over the time step. The Carter–Forest method [8] addresses this issue by defining time-
dependent source and re-emission terms that are sampled in the Monte Carlo solution of the transport equation. Also, other
recent work has defined a time-dependent Fleck factor that tunes the parameter a to achieve a more accurate solution [11].
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2.2. High-order update for unþ1
r

Despite its shortcomings, the Fleck and Cummings IMC method is widely used to solve time-dependent radiative transfer
problems. In this study we do not address the approximations in IMC discussed above (linearization and instantaneous
absorption/emission). Rather, we will address the temporal truncation error in the IMC method.

The value of unþ1
r

given by Eq. (9) is a first-order in Dt approximation to the solution of Eq. (4b). The method we introduce
in this study hinges on the fact that it is possible to exactly integrate Eq. (4b) using an integrating factor under the assump-
tions that b;r and S are constant.

The exact solution of Eq. (4b) at time tnþ1, when b and r are approximated by a single value, is given by
unþ1
r
¼ e�brcDtun

r
þ e�brcDtbr

Z tnþ1

tn

dt ebrcðt�tnÞ
Z

4p
IdbX þ 1� e�brcDt

cr
S: ð15Þ
We note that Eq. (15) is equivalent to the time-dependent source and emission terms that the Carter–Forest method simu-
lates via a Monte Carlo procedure. Rather than solve the Carter–Forest equations, we make a consistent approximation by
writing
Z tnþ1

tn

dt ebrcðt�tnÞIðtÞ � 1
brc
ðebrcDt � 1ÞIðtÞ; ð16Þ
thereby incurring an OðDtÞ error to get
unþ1
r
¼ e�brcDtun

r
þ 1

c
ð1� e�brcDtÞ

Z
4p

IdbX þ 1
r

S
� �

; ð17Þ
or more compactly
unþ1
r
¼ m1un

r
þ 1

c
ð1�m1Þ

Z
4p

IdbX þ 1
r

S
� �

; ð18Þ
with
m1 ¼ e�brcDt: ð19Þ
As in the Fleck and Cummings method we have introduced an OðDtÞ error in going from Eqs. (15) to (17).
Substituting the value of unþ1

r
given by Eq. (18) into the transport equation we get
1
c
@I
@t
þ bX � rI þ rI ¼ 1

4p
ð1�m1Þr

Z
4p

IdbX þ 1
4p
ðcrm1ur þ ð1�m1ÞSÞ: ð20Þ
Note that the only difference in using the exact update for unþ1
r

is changing f ! m1. We have the same definitions for the
effective scattering and absorption, only evaluated with m1. The range and limits of m1 are the same as f ; m1 is in [0,1] and
limits to zero as Dt !1.

3. Properties of m‘

As noted above, the Fleck and Cummings method gives a first-order in Dt update of unþ1
r

when a ¼ 1. This can be shown by
a Taylor expansion of f about Dt ¼ 0
f ¼ 1� brcDt þ ðbrcDtÞ2 þ OðDt3Þ: ð21Þ
The same Taylor series for m1 is
m1 ¼ 1� brcDt þ 1
2
ðbrcDtÞ2 þ OðDt3Þ: ð22Þ
Comparing terms in these series we see that f approximates m1 to OðDt2Þ: This indicates that the Fleck and Cummings
update for unþ1

r
is first-order in Dt when b and r are constant over the time step. The method is first-order because the con-

vergence rate for a time-integration method is one order less than the order of the error for one time step due to the fact that
error accumulates over several time steps [12].

The total error in a Fleck and Cummings time step is brcOðDt2Þ þ OðDtÞ
R

4p IdbX because of the approximation made in the
time dependence of I. When f is replaced by m1 the error in one step is OðDtÞ

R
4p IdbX.

As our numerical results will demonstrate, the factor m1 may cause the material temperature to change negligibly when
large time steps are used. At large values of brcDt the linearization error in IMC is large. For large brcDt the change in ur over
a time step is negligibly small when m1 is used. The errors introduced by f allow ur to change over a time step when brcDt is
large. Of course it is possible that too much heating is allowed, producing nonphysical material temperatures. Our numerical
results will show that m1 gives too little material heating and it is necessary to use a different factor than m1 for large time
steps.
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Fig. 1. A comparison of the Fleck factor, f0 and the m factor from the modified IMC method.
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A reason that m1 can allow too little heating compared with f is that at large values of brcDt, m1 decays exponentially,
rather than the rational polynomial decay of f. Therefore, we desire to construct an approximation to m1 that at some point
begins to decay rationally when brcDt is above some threshold. One way of constructing an approximation to m1 that tran-
sitions to rational polynomial behavior is
ml � e�brcDt þ 1
l

ðbrcDtÞl

ð1þ brcDtÞlþ1 : ð23Þ
Each ml, for l an integer, gives an lth order approximation to m1. We demonstrate this point by noting that
1
l

ðbrcDtÞl

ð1þ brcDtÞlþ1 ¼ OðDtlÞ; ð24Þ
that is, the rational expression in the definition of ml adds an order l error. We use the above formulation rather than a Taylor
series approximation because a Taylor series would not have the exponential behavior for intermediate values of brcDt and
it takes many terms to make a Taylor series expansion of m1 significantly different than f.

Notice that the only difference between our IMC method and the Fleck and Cummings IMC method is in the difference
between f and ml. If these two factors were identical then our method would give the same result as standard IMC. The dif-
ference between f and m are presented in Fig. 1. Since f 6 ml, our modified IMC method always has more effective scattering
than standard IMC when the time step is large compared to the time scale of the absorption/emission process.

Fig. 1 also shows how the ml values differ from m1 and f. The l value determines at which value of brcDt the ml approx-
imation breaks away from m1 and begins to decay with rational polynomial behavior. For higher values of l, ml matches m1
to larger values of brcDt. After breaking away from the exponential curve of m1; ml goes as ðbrcDtÞ�1, the same behavior as
f.

As we shall see in our numerical results, in problems where the opacity is a function of the temperature, the smaller
amount of heating in the ml solutions can affect the evolution of the system, even when standard IMC does not cause over-
heating. In these cases it would be possible to use the standard f factor when brcDt is small and overheating is not an issue
and use ml for an appropriate value of l when brcDt is large. We shall use these ideas to develop an adaptive method where l
is chosen dynamically.

4. Equilibrium diffusion limit analysis

The equilibrium diffusion limit of the thermal radiative transfer system, Eq. (4), occurs when the opacity, r, is large
compared to the length scale on which I and um vary and when the time dependence of I and um and the source S are small



5674 R.G. McClarren, T.J. Urbatsch / Journal of Computational Physics 228 (2009) 5669–5686
compared to that same length scale (this in turn makes b large) [6,13]. The equilibrium diffusion limit can be arrived at by
defining a small, positive parameter � and scaling Eq. (4) as
�
c
@I
@t
þ bX � rI þ 1

�
rI ¼ 1

4p�
crur; ð25aÞ

@ur

@t
¼ 1
�2 br

Z
4p

IdbX � cur

� �
þ bS: ð25bÞ
and taking the limit as �! 0 away from boundary and initial layers. This limit [13] gives the leading order intensity as a
Planckian at the local temperature,
Ið0Þ ¼ 1
4p

acðTð0ÞÞ4; ð26Þ
where the superscript (0) denotes terms that are zeroth order in �. The leading order temperature satisfies the nonlinear dif-
fusion equation,
@

@t
umðTð0ÞÞ þ a

@

@t
ðT ð0ÞÞ4 ¼ r � ac

3r
rðTð0ÞÞ4; ð27Þ
and the first moment in bX of the radiation intensity (generally called the radiation flux) is an order � quantity given by
Z
4p

bXIdbX� �ð1Þ
¼ ac

3r
rðTð0ÞÞ4: ð28Þ
To examine how our IMC method behaves in this limit we first look at ml under the scaling r! r=�,
ml !
�2

lbrcDt
þ Oð�4Þ: ð29Þ
That is, ml is an Oð�2Þ quantity. This implies that the effective scattering will be r to leading order and that the effective
absorption will be an order �2 quantity. In their analysis of the Fleck and Cummings IMC method, Densmore and Larsen [6]
found the same scaling for the effective scattering and absorption. Therefore, their results for the equilibrium diffusion limit
of the Fleck and Cummings method applies to our method as well.

Using the results of Densmore and Larsen, in the equilibrium diffusion limit our method solves the following diffusion
equation
umðTð0Þnþ1Þ � umðTð0Þn Þ
Dt

þ 1
c

/ð0Þnþ1 � /ð0Þn

Dt
¼ 1

Dt

Z tnþ1

tn
dtr � 1

3r
r/ð0Þ; ð30Þ
where
/ ¼
Z

4p
dbXI; ð31Þ
and we have used subscripts to indicate time level. This equation is similar to Eq. (27) except that it does not enforce
the equilibrium between / and acT4. This shortcoming of standard IMC in the equilibrium diffusion limit is not corrected
by using a higher order approximation to ur. Nevertheless, we know that the two methods will behave similarly in this
limit.

5. Frequency dependent case

The frequency dependent case poses no particular problems for developing a high order implicit Monte Carlo method. In
this case the equations we wish to solve are
1
c
@Im
@t
þ bX � rIm þ rmIm ¼

1
4p

crmbmur; ð32aÞ

@ur

@t
¼ b

Z 1

0
dm
Z

4p
dbXrmIm � crpur

� �
þ bS; ð32bÞ
where Imðx; bX; m; tÞ is the frequency dependent specific intensity and bm is the normalized Planck spectrum defined by
bm ¼
Bm

ur

; ð33Þ
where the frequency dependent Planck function is
Bm ¼
2hm3

c2 ðe
hm=kT � 1Þ�1

; ð34Þ
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with h and k the Planck and Boltzmann constants respectively. We have also defined the frequency dependent opacity rm and
the Planck averaged absorption opacity as
rp ¼
Z 1

0
bmrmdm: ð35Þ
We integrate Eq. (32b) as in the grey case to write
unþ1
r
¼ m1un

r
þ ð1�m1Þ

crp

Z 1

0
dm
Z

4p
dbXrmIm þ S

� �
ð36Þ
where
m1 ¼ e�brpcDt: ð37Þ
Upon substituting unþ1
r

from Eq. (36) into Eq. (32a) we get the linear transport equation
1
c
@Im
@t
þ bX � rIm þ rmIm ¼

1
4p

rmbm

rp

ð1�m1Þ
Z 1

0
dm0
Z

4p
dbX 0r0mI0m þ

cmrmbv

4p
un
r
þ 1

4p
rmbm

rp

ð1�m1ÞS: ð38Þ
In this equation the effective differential scattering cross-section is
d2r
dbXdm

ðm0 ! mÞ ¼ 1
4p

r0m
rmbm

rp

ð1�m1Þ: ð39Þ
The total effective scattering and absorption cross-sections are given by integrating Eq. (38) over bX and m to get
r0ms ¼ ð1�m1Þr0m; ð40Þ
r0ma ¼ m1r0m: ð41Þ
Similarly to Eq. (23) we can define an approximation to m1
ml ¼ e�brpcDt þ 1
l

ðbrpcDtÞl

ð1þ brpcDtÞlþ1 : ð42Þ
Eq. (38) compares with the Fleck and Cummings IMC method for multifrequency problems where the transport equation
solved is
1
c
@Im
@t
þ bX � rIm þ rmIm ¼

1
4p

rmbm

rp

ð1� f Þ
Z 1

0
dm0
Z

4p
dbX0r0mI0m þ

cfrmbv

4p
un
r
þ 1

4p
rmbm

rp

ð1� f ÞS; ð43Þ
where
f ¼ 1
1þ brpcDt

: ð44Þ
As in the grey case, the only difference between Fleck and Cummings IMC and our method is the factors f and ml.

6. Comparison on 0-D problems

We now compare methods using an infinite medium problem first explored by Densmore and Larsen [6]. In this problem
there is a temperature-independent opacity of r ¼ 100 cm�1 and a temperature-independent heat capacity of qcv ¼
0:01 GJ=cm3-keV ð1 GJ ¼ 1 gigajoule ¼ 109 JÞ and an initial material temperature of T ¼ 0:4 keV. For units of time we use
the nanosecond ð10�9 sÞ and keV for temperature. Expressing physical constants in these units gives the speed of light, c,
as 29.98 cm/ns and the radiation constant, a, as 0:01372 GJ=cm3-keV4. For this problem, the mean-free time of a photon,
ðcrÞ�1, is 3:34� 10�4 ns. The Fleck and Cummings results we obtain for this problem mirror those obtained by Densmore
and Larsen. We also compare the numerical methods with the exact solution for this problem, as given by Mosher [14].
The code used to compute Mosher’s result was contributed by Gentile [15].

In Figs. 2 through 5 the problem has the initial material temperature given by T ¼ 0:4 keV and the initial radiation tem-
perature as TR ¼ 0:5 keV, where
TR ¼
ffiffiffiffiffi
/
ac

4

r
: ð45Þ
Fig. 2 gives results obtained with a time step of Dt ¼ 0:01 ns. In this figure, the time step size is much larger than the
mean-free time, therefore we desire that the numerical results go to the equilibrium value of the material and radiation tem-
peratures after one time step. As expected for such an optically long time step, the exact solution has reached equilibrium
well before the end of the first time step. Indeed it is asking a lot for a numerical method to capture the steep transient that is
present in the exact solution in one time step. For the numerical results, at one extreme, the Fleck and Cummings solution,
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denoted in the figure by f, has the material temperature exceeding the equilibrium temperature after one time step. Succes-
sive time steps have the Fleck and Cummings solution nonphysically oscillating about the equilibrium value. These results
for Fleck and Cummings indicate that it is allowing too much absorption in the first time step, causing the material to heat up
too much. At the other extreme, the m1 solution only slightly heats up over the entire simulation time. For m1 there is too
much effective scattering so there is no heating in the problem. The m10 solution is similar to the m1 solution in that there is
not enough heating and the solution does not reach the equilibrium solution in the simulated time. The m3 and m4 solutions
do not overshoot the equilibrium value and approach the equilibrium solution monotonically from below, but they do not
reach equilibrium in one time step.
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Fig. 4. Infinite medium material temperature with initial TR ¼ 0:7 keV; Dt ¼ 0:01 ns.
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The consequences of decreasing the time step are shown in Fig. 3. Here the time step is Dt ¼ 0:001 ns and TR ¼ 0:5 keV.
This time step is still several mean-free times long and at t ¼ 0:001 ns the exact solution is nearly in equilibrium. The Fleck
and Cummings solution still overshoots the equilibrium temperature in the first time step and oscillates about the equilib-
rium thereafter. All of the ml solutions, including the m1 solution, approach the equilibrium solution from below and reach
the equilibrium solution monotonically from below.

Overheating of the material temperature can cause problems in a coupled radiation hydrodynamics simulation. In such a
calculation if the material temperature nonphysically overheats, as in the Fleck and Cummings solutions under discussion,
the hydrodynamic solution will incorrectly evolve because of the too large amount of energy deposited in the material by the
radiation.

Fig. 4 shows results where the initial values of TR and T are farther out of equilibrium, TR ¼ 0:7 keV and as before the exact
solution reaches equilibrium before the end of one time step. In this problem the Fleck and Cummings solution overshoots
the equilibrium value by about 17% and then oscillates about the equilibrium solution. The m3 and m4 solutions give a solu-
tion below the equilibrium value and take several time steps to reach the equilibrium. The m10 and m1 solutions never reach
the equilibrium value in the length of time simulated.

Results for a large disparity in the initial material and radiation temperature are shown in Fig. 5. Here TR ¼ 1:0 keV. In this
figure the Fleck and Cummings solution overshoots the equilibrium value by about 100% and does not get near the equilib-
rium value until the fourth time step. The m3 solution also overheats in the first time step and then cools to the equilibrium
solution. However, compared to the Fleck and Cummings solution it takes longer for the m3 solution to reach the equilibrium
temperature. The m4 solution is within 1% of the equilibrium solution in the first time step. Finally, the m10 and m1 solutions
underpredict the material temperature.

7. Adaptive method for choosing l

The 0-D results presented above show the benefits to the modified method and the drawbacks to standard IMC. The ques-
tion of how to pick l is still open; in the 0-D cases, no single selection of l was ideal for every problem. However, we can a
priori decide which l will work best for a given infinite medium problem. This decision is based on constraining the end of
time step material temperature to be less than the equilibrium temperature, if it starts out less than the equilibrium
temperature.

To choose the appropriate value of l we first determine if TR > T. If so, then the material temperature could overshoot the
equilibrium temperature. If T > TR, then material overheating cannot occur and we can use standard IMC. When TR > T , we
then determine if this overshoot occurs by solving a 0-D problem. For a 0-D problem, IMC has the solution for the material
energy given by Eq. (14) [5]
Dum ¼ aðTn
R
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Fig. 5. Infinite medium material temperature with initial TR ¼ 1:0 keV; Dt ¼ 0:01 ns.
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From Dum we can calculate unþ1
m

and determine Tnþ1 via the equation of state. This is compared with the equilibrium temper-
ature. The equilibrium temperature, Teq is found by solving an expression of the conservation of total (radiation and mate-
rial) energy:



Fig. 7.
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aðTn
R
Þ4 þ un

m
¼ aT4

eq
þ umðTeqÞ: ð47Þ
If Tnþ1 is greater than Teq, then we recompute Tnþ1 using m2 instead of f. If m2 overshoots the equilibrium temperature, then
we increase l until Tnþ1 6 Teq.

We use a similar procedure for multidimensional problems. In this case we solve a 0-D problem in each computational
cell. The 0-D problem we solve has the radiation temperature given as the maximum of the radiation temperature in the cell
and the temperatures (both radiation and material) in its neighboring cells. This takes into account the fact that energy can
move between cells. Using data from neighboring cells should be effective when the cells are optically thick. It is precisely in
the case of optically thick cells that overheating can be a problem; cells containing few mean-free paths will most likely not
have too much absorption in a time step because radiation from neighboring cells will stream through such an optically thin
cell. Also, for multidimensional problems we set a problem-dependent maximum value for l. We allow such a maximum be-
cause the 0-D solution can be too restrictive in suppressing material heating and force l to be larger than needed for mul-
tidimensional problems.

Henceforth, when we refer to a numerical solution as the ml solution we are referring to the adaptive method with the
maximum value of l in computing the integration factor ml.

8. Figure of Merit for adaptive method

The goal of this new method is to mitigate the nonphysical overheating that occurs with the standard Fleck and Cum-
mings IMC method. It does this by increasing the effective scattering and decreasing the effective absorption. A consequence
of this method is potentially reduced statistical noise in the material temperature. When there is less absorption, there is less
effective emission and the material and radiation tend to become increasingly decoupled. Thus, the material tends to remain
unchanged and therefore its temperature may display less statistical noise. The benefit of this reduced noise comes at the
cost of increased computational run times due to longer particle lifetimes with more scattering. We are thus motivated
to determine a quantitative measure of this noise reduction. The standard Figure of Merit (FOM) was developed to compare
variance reduction techniques in linear Monte Carlo transport [16]. We can apply the FOM to time-dependent, nonlinear cal-
culations if we compare identical snapshots of the two different methods on the same computer. We will use the following
FOM expression,
FOM ¼ 1
r2t

; ð48Þ
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where r2 is the variance of the estimate and t is the computer time. The computer time is proportional to the number
of particles, N and, according to the Central Limit Theorem, r2 goes as const=N, such that the FOM produces a
nearly constant value useful for comparing the different constants associated with different methods. A larger FOM is
better.

Let us consider a simple steady-state, homogeneous, infinite medium test problem in equilibrium. We model the infinite
medium as a 4� 4� 4 block of uniform cells with reflecting boundary conditions. The exact solution to this problem has the
medium remaining at its initial temperature; nevertheless, a numerical solution with a Monte Carlo method and several spa-
tial cells will induce variations about this equilibrium value. We will assume that we can use the spatial variance of the cell
temperatures in our FOM calculation; the assumption of independence between the cells becomes increasingly valid as the
opacity increases and the cells become more decoupled. We further assume that the opacity is inversely proportional to the
material temperature to get 1000=T3 ðT in keVÞ, which produces a constant Fleck factor, f and a constant ml that is unique for
each value of l. The density is 3 g=cm3, the timestep is a constant 10�5 ns, the cells are 1 cm3 cubes and qcv ¼
0:1 GJ=cm3-keV. The run times per time step were about 25 sec for Fleck and Cummings IMC, 29.5 sec for m2 and 30.5 sec
for m3 and above. The spatial variations of temperature over four time steps are shown in Figs. 6 and 7 for the material
and radiation, respectively, for both f and m3 (that is, where m3 is the maximum value for our adaptive method). In each
figure, the sets of points with lower variance are shown with thick lines. With m3, the material temperature variation is less
than that for standard Fleck and Cummings IMC and the radiation temperature variation increases. The resulting FOMs are
shown in Fig. 8, where we see a 2 to 4 increase in the material temperature FOM and a 2 to 4 decrease in the radiation tem-
perature FOM. In the IMC simulation for both methods, the particles undergo implicit absorption between effective scatters
[17]. The radiation temperature derives from a path-length estimator of the radiation energy and the material temperature
derives from an inverse heat capacity-weighted energy deposition, which derives from a path-length estimator of the par-
ticles undergoing implicit absorption. The two estimators are anti-correlated because their base tallies sum to the energy-
weight path-length for each particle track. However, the driving force here is the decreased coupling between the material
and radiation.

The reduction of noise in the material temperature is important even if it comes at a cost of marginally increased radi-
ation noise. We argue that it is more important to reduce noise in the material temperature because of additional coupling
concerns. In a radiation hydrodynamics simulation the material temperature couples to other physical operators including
the eponymous hydrodynamics operator, equation of state calculations and perhaps atomic physics equations. These other
physical operators are likely treated with deterministic methods that may be sensitive to noise in the material temperature.
On the other hand, noise in the radiation field is only directly seen by the implicit Monte Carlo method, which handles noise
in the solution as a matter of course.



Fig. 9. Layout for the hohlraum problem: the shaded regions have r ¼ 300T�3 cm�1 with T in keV, qcv ¼ 0:3 GJ=cm3-keV; the white regions are vacuum.
There is a 1 keV boundary source at z ¼ 0 and the problem is initially cold. The lines at r ¼ 0:05;0:44 and the dots at ðr; zÞ ¼ ð0:005;0:105Þ and (0.44,0.56)
indicate areas were we look at the solution in detail in later figures.

Fig. 10. Results for the hohlraum problem at t ¼ 10 ns. The top and bottom halves of each subfigure are, respectively, the standard IMC solution and the
adaptive solution with the maximum l set to 3.
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9. Multidimensional results

To demonstrate the effectiveness of the adaptive scheme to choose the integration order l, we solve a problem relevant to
inertial confinement fusion using an indirect drive, hohlraum configuration. The layout of the problem is due to Brunner [18],
though we have changed the problem from planar geometry to cylindrical r � z geometry. The layout of the problem is
shown in Fig. 9.

In Fig. 10 we compare the solutions from standard IMC with our adaptive scheme with a maximum integration order of 3
with fixed time step sizes. All problems used 5� 105 particles per time step initially, ramping up to 106 particles per time
step by the end of the simulation; the computational mesh has uniform spacing of 65 cells in the r direction and 260 cells in
the z direction. In Fig. 10, as well as our subsequent figures, there is noticeably less noise in the adaptive solution than in
standard IMC. The reduced noise is a result of there being more effective scattering in those regions of the problem where
the integration order is increased. Also, we notice that in the Dt ¼ 0:01 ns solution the temperature wave has propagated
slightly farther into the central block in the standard IMC solution.
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Fig. 11. Comparison of the maximum material temperature for the adaptive scheme and standard IMC.
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The effect of the adaptive scheme on the maximum material temperature as a function of time is shown in Fig. 11. This
figure demonstrates that standard IMC has the maximum temperature above the 1 keV drive temperature for most of the
problem. The adaptive scheme does not completely eliminate this overheating, but the maximum temperatures with the
adaptive scheme are smaller than standard IMC.

The differences in the initial heating transient are demonstrated in Figs. 12 and 13 by the plots of the temperature as a
function of time at the fiducial points. At ðr; zÞ ¼ ð0:005;0:105Þ, a point that is directly irradiated by the boundary source, the
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Fig. 15. The radiation temperature at r ¼ 0:05 cm;t ¼ 10 ns.
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standard IMC solution overshoots the drive temperature in its early transient. The adaptive scheme solution has a monotonic
transient, with both sizes of time step. At the point ðr; zÞ ¼ ð0:44;0:56Þ the transient from 0 to 1 ns has the same behavior for
the different methods but different rise times. The adaptive scheme’s results heat up more slowly than standard IMC for a
given time step. We do note that in terms of the entire solution time, this slight change in transient behavior is a minor effect.
Outside the transient region all methods converge to the same temperature at these two points.

Turning to geometric comparisons of the solutions, Figs. 14 and 15 show the material and radiation temperatures at
t ¼ 10 ns and r ¼ 0:005 cm. The material temperatures in Fig. 14 are in general agreement between the two methods. The
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largest discrepancy is near r ¼ 0:6 cm with the standard IMC solution and Dt ¼ 0:01 ns. This could be attributed to solution
noise. The radiation temperature solutions are also mostly in agreement, although the small time step solution with standard
IMC is plagued by noise. Along the line at r ¼ 0:44 cm the material temperatures are in general agreement across all solu-
tions (c.f. Fig. 16).

As we pointed out in the previous section, the solutions produced by the adaptive method have less noise in the material
temperature than the standard IMC results. In our figures of merit we saw that the decreased noise in the material came at a
cost of increased noise in the radiation. In the hohlraum problem there is clearly a reduction the noise in the material tem-
perature and the noise in the radiation solution did not increase noticeably. This is likely a result of the large regions of vac-
uum in this problem: the material temperature of the walls directly couples to the radiation in the vacuum regions.
Therefore, the reduction of noise in the material temperature can lead to a reduction of noise in the radiation temperature
in the vacuum regions.

10. Conclusions

We have presented a new implicit Monte Carlo method, in both grey and multifrequency situations, that provides a
framework to suppress the nonphysical overheating that can occur in the standard Fleck and Cummings IMC method when
large time steps are used. The method we have presented has the same properties in the diffusion limit as standard IMC. In
its implementation this new method differs from Fleck and Cummings IMC method only in the changing of the f factor to an
adaptively selected ml factor.

Infinite medium numerical results demonstrated how the choice of the integration order, l, affects the amount of heating
as a function of time. Where standard IMC nonphysically overheated the material and then had the material temperature
oscillate around the equilibrium temperature, the modified IMC solutions with the Fleck factor replaced by ml approached
the equilibrium temperature monotonically. For large initial differences in the radiation and material temperatures, the ml

solution did overshoot the equilibrium temperature for l ¼ 3.
Inspired by the infinite medium results, we developed an adaptive scheme to suppress the overheating that can be pres-

ent in standard IMC. The adaptivity is based on solving a 0-D problem in each computational cell; where the solution to the
0-D problem indicates that overheating could occur, we adjust the integration order to prevent the overheating. Using the
adaptive method on a multi-celled infinite medium problem, figures of merit indicated that the adaptive method suppresses
noise in the material temperature, but increased noise in the radiation temperature.

On a multidimensional problem, we showed that using the adaptive method suppressed most of the overheating that was
found in the standard IMC solution. Moreover, the adaptive solutions had less noise than standard IMC for the same number
of particles, an effect due to the added scattering in the problem. Though the behavior in transients was changed and the
amount of noise differed, both the adaptive scheme and standard IMC gave solutions that were mostly in agreement at late
times. In this problem the noise in the material temperature decreased and there was no noticeable increase in the radiation
temperature noise.

In the future we will investigate combining our method with semi-implicit ideas of Gentile [7] that include the variation
of the opacity with temperature in the linearization. Including the opacity in the linearization is compatible with our method
and should enhance the method’s robustness. We also plan on exploring the idea of solving a 0-D problem in each cell to
prescribe a time step control rather than changing the integration order. Beyond these extensions we hope to apply our
method to radiation hydrodynamics simulations of astrophysical phenomena and internal confinement fusion.
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